
Ultrasonic Object
Detector

Baoshan Liang
Brock Dykhuis
Nate Clarke
Nicholas Jacobs
Jonathon Madden

sdmay25-36

Client: Professor Song

1

Design

2

Project Need and Goal

● Design an Object Detector to which utilizes a series of Ultrasonic Pulses

● Utilize a phased array system to steer for direction scanning

○ Creating constructive and destructive interference with phase delays

● Detect reflected Ultrasonic waves, and determine time delay

● Calculate distance using time delay

● Detect and distinguish between multiple small objects

3

Functional Requirements
● Transmit 40 kHz ultrasonic pulses in a phased array for detection

● Detects an object up to 1 meter away and determine object direction using a phase

delay with a phased array

● Amplify and filter incoming signals to reduce noise

● MCU converts time delay and phase shift data into an object's location and send that

data to the Raspberry Pi over an MQTT connection

● Host a local web server using a Raspberry Pi to serve object detection data over Wifi

to be visualized on a sweeping radar display

4

Nonfunctional Requirements

● Have a clear and readable display (aesthetics)

○ Cursor tracking

○ Share colors for object clusters

○ Zooming and Panning

● Raspberry PI functioning as server for data points

● Linear phased array layout

5

Market/Literature Survey (Relevant Applications)

● Medical applications (scanning machinery)

● Nondestructive evaluation

● Sonar systems

● Security devices

● Proximity detection

● Water level monitoring

6

Resource Requirements

● MA40S4S/R (6S, 1R)

● ESP32 S3 Dev Kit (MCU)

● Adjustable Power Supply

● Raspberry PI 3b (As server for data pointers)

● 555 timers (for pulse generation)

● R/S Latches

● Filters

7

Task Decomposition
● Configure phase delays for the transmitter array to steer the ultrasonic beam in

specific directions using calculated time offsets

● Trigger 40 kHz ultrasonic pulses from the transmitters and receive echo signals using

the receiver circuit

● Amplify and filter received signals to reduce noise

● Calculate time-of-flight between transmission and reception to determine the object

distances

● Transmit object data location data to a Raspberry Pi using an MQTT connection

● Display transmitted data on a python-based GUI

8

Risk Identification and Mitigation
● Transducer Protection

○ The transducers are very sensitive and prone to damage

○ Ensure the transducers are powered according to specifications to avoid
damage.

● High Sound Intensity (Risk of hearing damage)
○ Transducers will receive a reduced voltage (12v instead of 20v).

○ Hearing protection is required when within 3 meters of the device.

● Voltage Step-up and Step-down (From and To MCU)

○ Voltage to receiver should receive voltage above 3.3 volts (step down)

○ Voltage must be stepped-up to power the 555 timers

● WIFI Interference
○ Using ADC_1 channel rather than ADC_2

9

Detailed Design (Display)

● Display Receives Sweep Data from Server.

● Each reading is represented with a point on the display.

○ Points fade overtime

● Points from the same object are displayed with the

same color.

○ Clustered based on 1 cm proximity

● The display allows for Zooming and Panning, and

Cursor Tracking

10

Detailed Design (Hardware)
● Signals from the MCU sent from the transmitter pins

(after a step-up) to fire the 555 timers.

● 555 timers send 40 kHz waves to which are further

stepped.

● 40 kHz waves power the transmitters to produce a

pulse.

● The signal of from a returning wave (object detected) is

sent back to the receiver.

● The signal is filtered and sent back to the MCU for

processing.

11

Detailed Design (MCU)

● Time delay formula: Δt = (d * sin(θ)) / c

○ Each transmitter pin is triggered based on the

time delay formula

○ If firing left (start delays from the right), and

vice-versa for right.

● MCU receives voltage values from waves received by

the receiver

● Sends data to the Raspberry Pi to post on the web

server

12

Δt = (d * sin(θ)) / c

Detailed Design (Server)

● Server hosting

○ Hosted locally on Raspberry Pi

○ Stores data from scan for display to use

○ Created using Apache

● Server communication

○ MQTT protocol allows communication between

devices on same network

○ Setup using Mosquitto

13

Design Tradeoffs

● Transducers - MA40S4S/R

○ Pros: cost, 40 kHz signals

○ Cons: size, noise, hard to control phase

● Microcontroller - ESP32-S3-DevKitC-1-N8R8

○ Pros: processing power, WiFi connectivity

○ Cons: trouble with ADC, more expensive than previous MCUs

14

Problems

15

Core Challenges

● Precise phase delay calculations

○ Implement a phase delay control across a multi transmitter

phased array to determine the scan direction

● Accurate distance measurement

○ Measuring time-of-flight using 40 kHz pulses, while filtering

out external noises

● Wireless data transmission

○ Sending detection data from the ESP32 to the Raspberry Pi

over Wifi using MQTT protocol

Δt = (d*sin(θ)) / c

ToF = (2 * Distance) / c

Distance = (ToF/2) * c

16

Core Challenges Cont.

● Web Server Hosting

○ Hosted locally on the Raspberry Pi using Apache

● Display

○ Python used for improved functionality

■ Zooming, Panning, Cursor Tracking, Clustering

● Large Transmitters (10 mm)

○ Ideally the transmitters would be smaller to allow for critical

spacing to be possible.

○ 10 mm is larger than the critical spacing, and greater than

λ/2 which is the standard spacing.

○ Minimum beam width is ~5 degrees, which would need to be

resolved with receiver triangulation.
17

Prototype

18

Software

● Python

○ display and communication

● Arduino IDE (C++)

○ MCU programming

● Apache

○ Web server

● Mosquitto

○ MQTT

● Falstad

○ Circuit simulation

19

Hardware

● 555 Timers

● Filter

● LM324 Op-Amp

● SR Latch

20

Testing

21

Communication Between Components

● Randomized points

○ Sent from the ESP32 to

the Raspberry Pi which

was then plotted by the

display

22

https://docs.google.com/file/d/1-u6VDQPLMdaBLgDF147im4g_YofHdQDP/preview

Initial Hardware Testing

● Sending a pulse directly to the receiver

○ Pulse of transmitter and received signal at

receiver align.

■ 555 timers were set up to generate

pulse signals independently

■ Each timer was configured to send a

pulse at specific intervals

■ Oscilloscope monitored the output

waveform of the pulse signal

23

Receiver Signal Testing

● When the transmitter is pulsing, the

oscilloscope shows that the receiver can

hear the transmitter

○ Oscilloscope displayed both the direct

signal and reflected echo

○ Helped confirm the receiver was

detecting transmitted and reflected

waves

24

https://docs.google.com/file/d/1hQpVxjgmXEeUD3L5pA1H0ZTw_KexRit9/preview
https://docs.google.com/file/d/1oeg78_cCdxQnxfpd_2AAHvNfey38r7uG/preview

Final Hardware Simulation

25

https://tinyurl.com/24x7d4ap

https://tinyurl.com/24x7d4ap

Final Hardware Testing

● Infeasibility

○ Murata ultrasonic sensors can not steer beams electrically

○ Beam shaping through frequency reduces sound pressure

○ Object size/shape recognition needs arrays and complex processing

○ Not cost-effective or realistic for small-scale implementation

● Testing vs. Simulation

○ Physical tests showed significant deviation from simulation results

○ Echo noise, uncontrolled reflections, and dampening affected accuracy

○ Lack of beam control and inconsistent signal strength impacted detection

○ Environmental factors not accounted for in simulation

26

Final Result

27

Demo

28

https://docs.google.com/file/d/1QiR2xQ1FKWQoSYyHpg398Nvl0t7jIYLe/preview

Improvements Over Previous Years
● Wireless communication

● Hardware/Circuit

○ More complex design with improved signal filtering

○ Transducers now controlled by MCU with option for independent operation

○ Cleaner overall layout and wiring for better performance and debugging

● Display Improvements

○ Panning, Zooming, Cursor Tracking

○ Point Clustering

● Smaller Transmitters (16 mm —> 10 mm)

● Circuit Simulation

○ Precise 40 kHz pulses using 555 timers

○ Receiver values baseline set using SR latch

○ Ideal Environment that displays accurate readings

29

Project Direction & Next Steps
● Infeasibility

○ Murata sensors can’t steer beams; tuning reduces power

○ Object sizing needs sensor arrays and complex processing

■ Dampening/Echo overlap causes false positives.

○ Lack of proper testing tools for beam forms and pressure fields.

■ Suggested: acoustic chamber, mic array, high-speed scope

○ Changing transducer element type (currently basic piezoelectric

elements)

■ Arduino ultrasonic sensor

● Faster and more reliable computations

○ Potential move to FPGA or quicker MCU

■ More precise time delays (nano seconds)

○ MCU with effective internal pulldown for ADC channels

30

Project Direction & Next Steps Cont.
● Phased array design changes

○ Additional transmitters

○ Square or 2D array

○ Additional receivers for triangulation

○ Smaller elements (if possible)

31

Questions?

32

Image Sources
● https://nikeson.com/en-us/products/ultrasonic-level-sensor

● https://us.medical.canon/products/ultrasound/

● https://en.wikipedia.org/wiki/Sonar

● https://en.m.wikipedia.org/wiki/File:Python-logo-notext.svg

● https://en.m.wikipedia.org/wiki/File:Arduino_Logo.svg

● https://commons.wikimedia.org/wiki/File:Apache_HTTP_server_l

ogo_%282019-present%29.svg

33

https://nikeson.com/en-us/products/ultrasonic-level-sensor
https://us.medical.canon/products/ultrasound/
https://en.wikipedia.org/wiki/Sonar
https://en.m.wikipedia.org/wiki/File:Python-logo-notext.svg
https://en.m.wikipedia.org/wiki/File:Arduino_Logo.svg
https://commons.wikimedia.org/wiki/File:Apache_HTTP_server_logo_%282019-present%29.svg
https://commons.wikimedia.org/wiki/File:Apache_HTTP_server_logo_%282019-present%29.svg

